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Abstract

State-of-the-art subspace clustering methods are based

on self-expressive model, which represents each data point

as a linear combination of other data points. By enforcing

such representation to be sparse, sparse subspace cluster-

ing is guaranteed to produce a subspace-preserving data

affinity where two points are connected only if they are from

the same subspace. On the other hand, however, data points

from the same subspace may not be well-connected, leading

to the issue of over-segmentation. We introduce dropout to

address the issue of over-segmentation, which is based on

randomly dropping out data points in self-expressive model.

In particular, we show that dropout is equivalent to adding

a squared ℓ2 norm regularization on the representation co-

efficients, therefore induces denser solutions. Then, we re-

formulate the optimization problem as a consensus problem

over a set of small-scale subproblems. This leads to a s-

calable and flexible sparse subspace clustering approach,

termed Stochastic Sparse Subspace Clustering, which can

effectively handle large scale datasets. Extensive experi-

ments on synthetic data and real world datasets validate

the efficiency and effectiveness of our proposal.

1. Introduction

In many real world applications, high-dimensional data

can be well approximated by a union of low-dimensional

subspaces where each subspace corresponds to a class or a

category. The problem of segmenting a set of data points ac-

cording to the subspaces they belong to, known as subspace

clustering [46, 48], has found many important applications

such as motion segmentation [9, 8], image clustering [28],

hybrid system identification [45, 3], genes expression pro-

files clustering [29] and so on.

Prior work. A traditional method for subspace clustering

is k-subspaces, which is based on parameterizing a set of

basis to the subspaces and finding a segmentation that min-

imizes the distance of the data points to its corresponding

subspaces [5, 2]. The k-subspaces method requires an ac-

curate estimation of the dimension of the underlying sub-

spaces which is not available in many applications. In ad-

dition, the associated optimization problem is nonconvex,

for which a good initialization is important for finding the

optimal solution [23, 16]. Due to the limitations of the k-

subspaces methods, modern subspace clustering resorts to

spectral clustering which recovers the segmentation of data

from a proper data affinity graph that captures whether two

points are from the same subspace or not. A plethora of

early methods for constructing the affinity graph are based

on fitting and comparing local subspaces [54, 63]. Such

methods require dense samples on the subspaces and can-

not handle cases where the subspaces are intersecting.

In the past few years, self-expressive model [11, 12] has

emerged as a powerful tool for computing affinity graph

in subspace clustering and has spurred substantial devel-

opments and applications. Given a data matrix X =
[x1, · · · ,xN ] ∈ IRD×N whose columns are drawn from

a union of subspaces, self-expressive model states that each

data point xj ∈ IR
D can be expressed as a linear combina-

tion of other data points, i.e.,

xj = Xcj + ej , cjj = 0, (1)

where cj ∈ IRN is a coefficient vector and ej is an error

term. While the linear equation in (1) may have many fea-

sible solutions, there exists at least one cj that is subspace-

preserving—that is, cij ̸= 0 only if points xi and xj

are in the same subspace [39, 61, 48]. Given subspace-

preserving representations [c1, · · · , cN ], the affinity graph

is induced by an affinity (weight) matrix whose i, j-th entry

is |cij |+ |cji|.
Sparse subspace clustering. Many methods have been

proposed for computing subspace-preserving representa-

tions by imposing a prior or regularization on the coeffi-

cients cj [12, 28, 10, 24, 40, 60, 55, 58]. Among them,

sparse subspace clustering (SSC) [12, 60] that are based

on finding the sparsest solution to (1) have become ex-

treme popular due to their theoretical guarantees and em-

pirical success. Under mild conditions, SSC is guaran-

teed to recover subspace-preserving solutions even when

data points are corrupted with outliers, noises or missing

values and when the subspaces are intersecting or affine
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[39, 61, 52, 44, 21, 59].

While subspace-preserving recovery guarantees that no

two points from different subspaces are connected in the

affinity graph, there is no guarantee that points from the

same subspace form a single connected component. Thus,

a connectivity issue arises that spectral clustering produces

an over-segmentation for subspaces with data points that are

not well-connected. In particular, an early work [31] shows

that the connectivity issue indeed exists in SSC when the

dimension of the subspace is greater than 3.

Several works have attempted to address the connectivity

issue in SSC. Motivated by the fact that a low-rank regular-

ization on the matrix of coefficients induces dense solution-

s, a mixture of ℓ1 and nuclear norm is proposed in [53] to

address the connectivity issue. Unfortunately, solving the

optimization problem in [53] requires doing singular val-

ue decomposition in each iteration of the algorithm, which

is computationally prohibitive for large scale data. More

recently, in [51] a post-processing step that merges poten-

tial over-segmented fragments of a subspace into the same

cluster is proposed. While such an approach is conceptually

simple and has theoretical guarantees, it only works under

the idealized setting where the affinity graph is perfectly

subspace-preserving.

Paper Contributions. We exploit dropout to address the

connectivity issue associated with SSC. Dropout is a tech-

nique developed for deep learning as an implicit regulariza-

tion that can effectively alleviate overfitting [41, 50, 49, 4,

13, 7]. In this paper, dropout refers to the operation of drop-

ping out columns of X uniformly at random when comput-

ing the self-expressive representation in (1). Such an op-

eration is equivalent to adding an ℓ2 regularization term on

the representation coefficient vector cj , which effectively

induces dense solutions. By dropping out columns of the

dictionary we solve optimization problems that only involve

a (typically very small) part of the original dataset. This is

a particularly attractive property when dealing with ultra-

large scale datasets that cannot be loaded into memory.

The contributions of the paper are highlighted as follows.

1. We introduce a dropout technique into self-expressive

model for subspace clustering, and show that it is asymp-

totically equivalent to a squared ℓ2 norm regularizer.

2. We propose a stochastic sparse subspace clustering

model that is based on dropping out columns of the data

matrix. The model has flexible scalability and implicit

ability to improve the affinity graph connectivity.

3. We reformulate the stochastic sparse subspace clustering

model as a consensus optimization problem and develop

an efficient consensus algorithm for solving it.

4. We conduct extensive experiments on both synthetic da-

ta and real world benchmark data, and demonstrate the

state-of-the-art performance of our proposal.

2. Related Work

Self-expressive models in subspace clustering. Exist-

ing subspace clustering methods that are based on self-

expressive model can be categorized into three groups. a)

For the purpose of inducing subspace-preserving solutions,

existing methods use different regularizations on cj . This

includes the ℓ1 norm [11], the nuclear norm [25], the ℓ2
norm [28], the traceLasso norm [27], the ℓ1 plus nuclear

norms [53], the ℓ1 plus ℓ2 norms in [58], the ℓ0 norm in

[55] and the weighted ℓ1 norm in [19, 20]. b) To handle

different forms of noise that arise in practical applications,

existing methods use different regularizations on ej , e.g.,

the ℓ1 and ℓ2 norms used in [11], the ℓ2,1 norm used in [25],

the mixture of Gaussians in [18], and the weighted error

entropy proposed in [22]. c) To perform subspace cluster-

ing in an appropriate feature space, self-expressive models

are combined with feature learning methods that are based

on learning a linear projection [26, 33, 35] or convolution

neural networks [14, 64, 62].

Scalable subspace clustering. In recent years, several at-

tempts to address the scalability of subspace clustering have

been proposed. For example, in [36], a small subset of data

are clustered at first and then the rest of the data are classi-

fied based on the learned clusters; in [60, 10], a greedy al-

gorithm [34] is adopted to solve the sparse self-expression

model; in [43], a sketching technique is used to speed up

SSC; in [56], a divide-and-conquer framework is proposed

for extending SSC to large-scale data; in [37], an online dic-

tionary learning based method is proposed to scale up low-

rank subspace clustering [47, 25]; in [1], SSC is conducted

on a hierarchically clustered multiple subsets of the data and

then merged via a multi-layer graphs fusion method; in [57],

a greedy exemplar selection approach is proposed to extend

SSC to handle class-imbalanced data. While these meth-

ods perform subspace clustering on dataset of larger size,

there is neither any theoretical guarantee on the quality of

the dictionary used in [1, 36, 37] for the purpose of subspace

clustering, nor any effort to resolve the connectivity issue of

SSC in [10, 60, 56, 43, 1]. As a result, the clustering accu-

racy in these methods is heavily sacrificed due to using sub-

sampled data or erroneous over-segmentation. Lastly, al-

most all the subspace clustering methods mentioned above

need to load the entire data into memory. If the size of the

data is too large, none of these methods still work.

3. Dropout in Self-Expressive Model

We formally introduce the dropout operation to the self-

expressive model, and show that it is equivalent to adding

an ℓ2 regularization on the representation vector. In the next

section, we use such property of dropout to develop a scal-

able and flexible subspace clustering model for addressing

the graph connectivity issue associated with SSC.
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Consider the problem of minimizing the self-expressive

residual as follows:

min
cj

∥xj −Xcj∥
2
2 , s.t. cjj = 0. (2)

Inspired by the dropout technique used in training neural

networks [41, 50, 49, 4, 13, 7], we propose a dropout opera-

tion in the self-expressive model in (2). Similar to dropping

“hidden neurons” in a neural network, our operation is to

discard columns of X uniformly at random.

Specifically, we introduce 0 ≤ δ ≤ 1 as the dropout rate

and let {ξi}
N
i=1 be N i.i.d. Bernoulli random variables with

probability distribution given by

ξi =

{

1
1−δ

with probability 1− δ,

0 with probability δ.
(3)

Then, dropping the columns ofX uniformly at random with

probability δ in (2) is achieved by multiplication of the N

i.i.d. Bernoulli random variables {ξi}
N
i to the correspond-

ing columns in X , i.e.,

min
cj

∥xj −
∑

i

ξicijxi∥
2
2 s.t. cjj = 0. (4)

The following theorem gives the asymptotic effect of the

dropout in the self-expressive model.

Theorem 1 Let {ξi}
N
i=1 be N i.i.d. Bernoulli random vari-

ables with distribution as defined in (3). We have that:

Eξ∥xj −
∑

i

ξicijxi∥
2
2

= ∥xj −
∑

i

cijxi∥
2
2 +

δ

1− δ

∑

i

∥xi∥
2
2c

2
ij .

(5)

By Theorem 1, we can see that the optimization problem

min
cj

Eξ∥xj −
∑

i

ξicijxi∥
2
2 s.t. cjj = 0, (6)

is equivalent to the optimization problem

min
cj

∥xj−
∑

i

cijxi∥
2
2 +

δ

1− δ

∑

i

∥xi∥
2
2c

2
ij s.t. cjj = 0.

(7)

In particular, if the columns of X have unit ℓ2 norm (e.g.,

by a data preprocessing step), then (7) reduces to

min
cj

∥xj −
∑

i

cijxi∥
2
2 + λ∥cj∥

2
2 s.t. cjj = 0, (8)

where λ = δ
1−δ

. This is precisely the formulation of the

subspace clustering method based on least squares regres-

sion [28], and is known to yield dense solutions in general.

In this paper, we aim to develop a scalable and flexible

subspace clustering method based on the formulation in (6)

which, by means of its equivalency to (8), has an implicit

ℓ2 regularization that induces dense solutions. For practical

purpose, we replace the expectation Eξ[·] with the sample

mean, and approach the problem in (6) by solving the fol-

lowing optimization problem

min
cj

1

T

T
∑

t=1

∥xj −
∑

i

ξ
(t)
i cijxi∥

2
2 s.t. cjj = 0, (9)

where ξ
(t)
i is the t-th instance of the Bernoulli random vari-

able drawn independently from the distribution in (3).

4. Stochastic Sparse Subspace Clustering: For-

mulation and A Consensus Algorithm

As briefly discussed in the introduction, sparse subspace

clustering aims to find a self-expressive representation with

the sparest coefficient vector. That is, it aims to solve the

following optimization problem

min
cj

∥xj −Xcj∥
2
2 , s.t. ∥cj∥0 ≤ s, cjj = 0, (10)

where ∥ · ∥0 is the ℓ0 pseudo-norm that counts the number

of nonzero entries in the vector and s is a tuning param-

eter that controls the sparsity of the solution. It has been

shown in [60] that under mild conditions, the greedy algo-

rithm known as Orthogonal Matching Pursuit (OMP) [34]

for solving (10) provably produces a subspace-preserving

solution. On the other hand, it is also established in [60]

that the number of nonzero entries in a subspace-preserving

solution produced by OMP cannot exceed the dimension of

the subspace that xj lies in. This upper bound limits the

ability of OMP in producing a dense affinity graph, leading

to a high risk of over-segmentation.

We incorporate the dropout technique in the previous

section to address the connectivity issue in solving (10) via

OMP. Specifically, in Section 4.1 we propose a flexible sub-

space clustering method that combines SSC with (9), and

subsequently rewrite it as a consensus optimization prob-

lem. Then, in Section 4.2 we present an efficient alternating

minimization algorithm to solve the consensus problem.

4.1. Stochastic Sparse Subspace Clustering

By combining the sample mean of the self-expressive

model in (9) and the sparsity constraint in (10), we propose

a stochastic sparse subspace clustering model as follows:

min
cj

1

T

T
∑

t=1

∥xj −
∑

i

ξ
(t)
i cijxi∥

2
2

s.t. ∥cj∥0 ≤ s, cjj = 0,

(11)
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Algorithm 1 : Damped OMP

Input: Dictionary Ξ, I, xj ∈ IR
D, cj , s, λ and ϵ.

1: Initialize k = 0, residual q
(0)
j = xj , and S(0) = ∅.

2: while k < s and ∥q
(k)
j ∥2 > ϵ do

3: Find i∗ via (16) and update S(k+1) ← S(k)
∪

{i∗};

4: Update b
(k+1)
j by solving (17);

5: Update q
(k+1)
j ← xj − Ξ b

(k+1)
j and k ← k + 1;

6: end while

Output: b
∗
j

where s controls the sparsity of the solution.1 Due to the

stochastic nature of the dictionaries used in the T subprob-

lems and the sparsity constraint, we refer (11) to Stochastic

Sparse Subspace Clustering.

To understand the essence in solving problem (11), we

introduce T auxiliary variables {b
(t)
j }

T
t=1 and derive an e-

quivalent formulation as follows:

min
cj ,{b

(t)
j

}T
t=1

1

T

T
∑

t=1

∥xj −
∑

i

ξ
(t)
i b

(t)
ij xi∥

2
2,

s.t. b
(1)
j = · · ·=b

(T )
j = cj , ∥b

(t)
j ∥0 ≤ s,

b
(t)
jj = 0, t = 1, · · · , T.

(12)

This is clearly a consensus problem over T blocks. Once

the optimal solution cj is found, we induce the affinity vi-

a aij = 1
2 (|cij | + |cji|) and apply spectral clustering via

normalized cut [38] on this affinity matrix.

Remark. In problem (12), the T subproblems can be solved

in parallel and each subproblem uses a small dictionary with

(1 − δ)N ≪ N columns on average. This is appealing

especially when the data is too large to fit into the memory.

4.2. Consensus Orthogonal Matching Pursuit

To efficiently solve problem (12), instead of solving

problem (12) exactly, we introduce a set of penalty terms

and solve the relaxed problem as follows:

min
cj ,{b

(t)
j

}

1

T

T
∑

t=1

∥xj−
∑

i

ξ
(t)
i b

(t)
ij xi∥

2
2 + λ∥b

(t)
j −cj∥

2
2

s.t. ∥b
(t)
j ∥0 ≤ s, b

(t)
jj = 0, t = 1, · · · , T,

(13)

where λ > 0 is a penalty parameter. We solve problem (13)

by updating {b
(t)
j }

T
j=1 and cj alternately.

1. When cj is fixed: we solve for {b
(t)
j }

T
j=1 in parallel

from each of the T subproblems as follows

min
b
(t)
j

∥xj −
∑

i

ξ
(t)
i b

(t)
ij xi∥

2
2 + λ∥b

(t)
j − cj∥

2
2,

s.t. ∥b
(t)
j ∥0 ≤ s, b

(t)
jj = 0.

(14)

1Due to the implicit squared ℓ2 regularization, the sparsity can be

greater than the dimension of the subspace.

Algorithm 2 Consensus OMP for Solving Problem (13)

Input: X = [x1, . . . ,xN ] ∈ IRD×N , xj ∈ IR
D, parame-

ters s, δ, λ, ϵ, T .

1: Sample T subdictionaries
{

Ξ(t)
}T

t=1
via (3);

2: while not converged do

3: Given cj , solve T subproblems for {b
(t)
j }

T
t=1 in par-

allel via Algorithm 1;

4: Given {b
(t)
j }

T
t=1, update cj via cj ←

1
T

∑T
t=1 b

(t)
j ;

5: end while

Output: c∗j .

Denote the index set for the preserved and dropped

columns for the subproblem indexed by t with I(t) :=

{i : ξ
(t)
i > 0} and J (t) := {i : ξ

(t)
i = 0}, respective-

ly, and let Ξ(t) be the same as the data matrix X except

that columns indexed by J are set to zero vectors. For

clarity, we rewrite problem (14) via dictionary Ξ(t) but

ignore the superscript t as follows:

min
bj

∥xj − Ξ bj∥
2
2 + λ∥bj − cj∥

2
2,

s.t. ∥bj∥0 ≤ s, bjj = 0.
(15)

To solve problem (15) efficiently, we develop a greedy

algorithm to update bj from the support within the index

set I of the preserved columns.2 To be specific, we ini-

tialize the support set S(0) as an empty set, the residual

q
(0)
j = xj , and find the support set S(k+1) of the solu-

tion bj by a greedy search procedure, i.e., incrementing

S(k) by adding one index i∗ at each iteration via

i∗ = arg max
i∈I\S(k)

ψi(q
(k)
j , cj), (16)

where ψi(q
(k)
j , cj) = (x⊤

i q
(k)
j )2+2λx⊤

i q
(k)
j cij −λc

2
ij ,

update S(k+1) = S(k) ∪ {i∗} to solve problem

min
bj

∥xj − Ξ bj∥
2
2 + λ∥bj − cj∥

2
2

s.t. supp(bj) ⊆ S
(k+1)

(17)

with a closed-form solution, and then compute the resid-

ual q
(k+1)
j = xj − Ξ b

(k+1)
j .

We summarize the steps for solving problem (15) in Al-

gorithm 1, termed as Damped Orthogonal Matching Pur-

suit (Damped OMP).

2. When {b
(t)
j }

T
j=1 are fixed: we solve cj from problem

min
cj

λ

T

T
∑

t=1

∥b
(t)
j − cj∥

2
2, (18)

which has a closed-form solution cj =
1
T

∑T
t=1 b

(t)
j .

2The reason to update bj only from the support in I is to enlarge the

support of the consensus solution cj while keeping the efficiency. This is

equivalent to adopt an enlarged sparsity parameter s′ > s in (11) or (12).
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Figure 1. Performance comparison of S3COMP-C, S3COMP, EnSC and SSCOMP on synthetic data.

Algorithm 3 : S3COMP-C

Input: X = [x1, . . . ,xN ] ∈ IRD×N , xj ∈ IR
D, parame-

ters s, δ, λ, ϵ and T .

1: Run Algorithm 2;

2: Define affinity via aij =
1
2 (|cij |+ |cji|);

3: Run spectral clustering via normalized cut [38];

Output: Segmentation matrix.

We summarize the alternating minimization algorithm

for solving the consensus problem (13) in Algorithm 2,

termed Consensus OMP. For clarity, we sort the whole

procedure of our proposed subspace clustering approach

in Algorithm 3, termed Stochastic Sparse Subspace Clus-

tering via Orthogonal Matching Pursuit with Consensus

(S3COMP-C), and we use S3COMP to refer the approach

that solves the consensus problem (13) via Algorithm 2 on-

ly one outer iteration. Note that the support size of each

solution b
(t)
j is up to s and thus the support size of the solu-

tion cj obtained via 1
T

∑T
t=1 b

(t)
j will be up to sT , leading

to improved connectivity of the induced affinity graph.

Convergence and Stopping Criterion. Similar to the con-

vergence analysis in OMP [34], Algorithm 1 converges in

at most s steps. For Algorithm 2, we stop it by checking

whether the relative changes of cj in two successive iter-

ations is smaller than a threshold ε or reaching the maxi-

mum iterations. Although we cannot prove the convergence

of Algorithm 2, experiments on synthetic data and the re-

al world data demonstrate a good convergence. In experi-

ments, we observe that the number of the outer iterations is

small, i.e., T0 = 3 ∼ 5 on real world datasets.

Complexity Analysis. In Algorithm 2, it solves T size-

reduced subproblems via a damped OMP in parallel, and

each subproblem requires N(1 − δ) inner products. Thus,

the computation complexity in this stage for each subprob-

lem is O(DN2(1− δ)s) in one outer iteration. The affinity

matrix of S3COMP and S3COMP-C contains at most sTN

non-zero entries; whereas the affinity matrix of SSCOM-

P contains at most sN nonzero entries. The eigenvalue

decomposition of a sparse matrix using ARPACK requires

O(snTN) operations where n is the number of subspaces

(i.e., clusters). While the affinity matrix of S3COMP-C and

S3COMP may contain more nonzero entries (up to sTN ),

the affinity matrix is still sparse and thus the time com-

plexity of eigenvalue decomposition in spectral clustering

is O(nsTN), which is slightly higher than O(nsN) of SS-

COMP. For a data set of large size, we set (1− δ)≪ 1 and

solve T size-reduced subproblems in parallel. This endors-

es S3COMP-C and S3COMP more flexible scalability.

5. Experiments

To evaluate the performance of our proposed approach,

we conduct extensive experiments on both synthetic data

and real world benchmark datasets.

Methods and Metrics. We select eight state-of-the-art sub-

space clustering methods as baselines: SCC [8], LSR [28],

LRSC [47], and several scalable subspace clustering meth-

ods, including SSCOMP [60], EnSC [58], OLRSC [37],

SR-SSC [1], and ESC [57]. In experiments, we use the code

provided by the authors for computing the self-expression

matrix C in which the parameter(s) is tuned to give the best

clustering accuracy. For spectral clustering, we apply the

normalized cut [38] on the affinity matrix A which is in-

duced via A = |C| + |C⊤|, except for SCC, which has its

own spectral clustering step. The reported results in all the

experiments of this section are averaged over 10 trials. Fol-

lowing [60], we evaluate each algorithm with clustering ac-

curacy3 (acc:a%), subspace-preserving representation error

(sre:e%), connectivity4 (conn:c), and running time5 (t).

5.1. Experiments on Synthetic Data

Setup. We follow the setting used in [60] to randomly gen-

erate n = 5 subspaces of dimension d = 6 in the ambient

space IR9. Each subspace contains Ni data points random-

ly sampled on a unit sphere of IR9, in which Ni varies from

30 to 3396. Thus, the total number N of data points varies

3It is computed by finding the best alignment between the clustering

index and the ground-truth labels under all possible permutations.
4Let λ

(i)
2 be the second smallest eigenvalue of the normalized graph

Laplacian corresponding to the i-th cluster [30]. The connectivity is com-

puted by c := mini{λ
(i)
2 }ni=1 for synthetic data. To show the improve-

ment on average for real world data, we compute c̄ :=
1
n

∑n
i=1 λ

(i)
2 .

5The running time of S3COMP in Tables 1 to 5 is based on the maxi-

mum running time among T subtasks plus the time of spectral clustering.
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Figure 2. Performance of S3COMP-C as functions of T and δ on synthetic data of Ni = 320. The intensity corresponds to the value.

from 150 to 16980. For a fair comparison, we use the same

parameter s = 5 as in [60]. We set T = 15 and select the

dropout rate δ in {0.1, 0.2, · · · , 0.9}.
We conduct experiments on the synthetic data with dif-

ferent data points per subspace and report the accuracy, con-

nectivity, and subspace-preserving errors. We show each

metric as a function of Ni, and present them as curves in

Fig. 1. We observe that both S3COMP-C and S3COMP

outperform SSCOMP in clustering accuracy and connec-

tivity, especially when the density of data points is lower.

It is clear that EnSC, S3COMP and S3COMP-C all im-

prove the connectivity in all cases. The computation time

of S3COMP is comparative to (or even lower than) SS-

COMP. EnSC yields very competitive clustering accuracy

to S3COMP but the time cost is higher than S3COMP-C.

To better understand the effects of parameters δ and T ,

we conduct experiments with S3COMP-C on synthetic da-

ta of Ni = 320 under varying δ ∈ {0.1, · · · , 0.9} and

T ∈ {5, 10, · · · , 100}. The performance of each metric

is recorded as a function of δ and T , and displayed as in-

tensity of a gray image in Fig. 2. We observe that the

clustering accuracy tends to being stable even using a high

dropout rate (e.g., δ = 0.85) whenever T is large than 10.

Roughly speaking, higher dropout rate leads to higher con-

nectivity and more efficient algorithm. Thought we also

observe that using a higher dropout rate leads to slightly

higher subspace-preserving errors6, it does not necessarily

degenerate the clustering accuracy. This is because that the

improved connectivity could not only help to avoid over-

segmenting the data points in same subspaces but also make

the connected data points within the same subspaces have

more compact clusters in spectral embedding.

5.2. Experiments on Real World Datasets

In this subsection, we demonstrate the performance of

the proposed method on four benchmark datasets, including

Extended Yale B (EYaleB) [15], Columbia Object Image

Library (COIL100) [32], MNIST [17], and German Traffic

6This does not contribute to improve the algebraic connectivity [30].

Thus, the exact relation of the algebraic connectivity with respect to δ is

not simply monotonous.

Sign Recognition Benchmark (GTSRB) [42].

Dataset Descriptions. Extended Yale B contains 2432

frontal facial images of 38 individuals under 64 different

illumination conditions, each of size 192 × 168. In our ex-

periments, we use the images of all the 38 individuals and

resize each image into 48 × 42 pixels and concatenate the

raw pixel in each image as a 2016-dimensional vector.

COIL100 contains 7,200 gray-scale images of 100 dif-

ferent objects. Each object has 72 images taken at pose

intervals of 5 degrees. We resize each image to the size

32× 32, and concatenate the gray-pixels in each image as a

1024-dimensional vector.

MNIST contains 70,000 grey-scale images of handwrit-

ten digits 0−9. In addition to the whole dataset (denoted M-

NIST70000), we also prepared two subsets—MNIST4000

and MNIST10000, which are generated by random sam-

pling Ni = 400 and Ni = 1000 images per category, re-

spectively. For each image, we compute a feature vector of

dimension 3,472 using the scattering convolution network

[6] and then reduce the dimension to 500 using PCA.

GTSRB contains 43 categories of street sign images with

over 50,000 samples in total. We preprocess the dataset

as in ESC [57], which results in an imbalanced dataset of

12,390 images in 14 categories. Each image is represent-

ed by a 1568-dimensional HOG feature provided with the

database. The feature vectors are mean-subtracted and pro-

jected to dimension 500 by PCA.

Setup. Note that all feature vectors are normalized to have

unit ℓ2 norm before performing subspace clustering. For

a fair comparison, we set s = 10 for MNIST and s = 5
for Extended Yale B, respectively, as in SSCOMP [60], and

set s = 3 for GTSRB and COIL100.7 For the experiments

on the real world datasets, we set T = 15 and select the

dropout rate δ in {0.10, 0.20, · · · , 0.90}.
Results. The results on Extended Yale B are listed in Ta-

ble 1. We can read that S3COMP-C and S3COMP im-

prove the clustering accuracy roughly 10% and 4% over SS-

COMP, respectively, and S3COMP-C yields the second best

clustering accuracy. The connectivity is improved while

7In practice, the parameter s is set to be equal to (or slightly less than)

the intrinsic dimension of the data, which could be estimated.
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Method
MNIST4000 MNIST10000

acc (a%) sre (e%) conn (c̄) t (sec.) acc (a%) sre (e%) conn (c̄) t (sec.)

LSR 80.02 78.53 0.6075 14.79 81.75 80.22 0.6389 147.98

LRSC 85.61 79.87 0.6419 4.77 89.60 81.36 0.6646 12.87

SCC 71.30 - - 70.75 72.20 - - 218.16

OLRSC 65.32 85.70 0.8660 47.4 67.62 86.11 0.8738 217.43

ESC 87.22 - - 27.98 90.76 - - 59.41

EnSC 85.85 20.40 0.1117 35.89 85.94 16.63 0.0938 89.21

SSCOMP 91.14 34.26 0.1371 3.63 93.80 32.08 0.1212 11.99

SR-SSC 91.70 - - 39.24 90.05 - - 79.87

S3COMP 94.30 33.15 0.1529 4.70 95.73 30.11 0.1720 9.14

S3COMP-C 94.27 33.26 0.1527 12.88 95.74 33.15 0.1719 26.50

Table 3. Performance comparison on MNIST where ‘-’ denotes the metric cannot be computed properly.

Method
Extended Yale B

acc (a%) sre (e%) conn (c̄) t (sec.)

SCC 12.80 - - 615.69

OLRSC 26.84 95.98 0.6284 98.25

LSR 63.99 87.57 0.5067 3.21

LRSC 63.17 88.75 0.4526 7.20

EnSC 61.20 23.14 0.0550 52.98

SR-SSC 62.11 - - 79.46

SSCOMP 77.59 20.13 0.0381 2.54

ESC∗ 87.58 - - 28.01

S3COMP 81.61 20.18 0.0723 1.92

S3COMP-C 87.41 20.28 0.0667 5.05

Table 1. Performance comparison on EYaleB where ‘-’ denotes the

metric cannot be computed properly. ESC∗ uses different way to

define affinity from the self-expression coefficients.

Method
COIL100

acc (a%) sre (e%) conn (c̄) t(sec.)

SCC 55.24 - - 479.13

LRSC 50.10 96.43 0.7072 25.11

LSR 48.22 94.95 0.5246 62.91

SSCOMP 49.88 14.03 0.0060 13.33

ESC 56.90 - - 56.31

SR-SSC 58.85 - - 204.38

EnSC 63.94 4.36 0.0163 19.03

S3COMP 71.47 3.35 0.0081 7.68

S3COMP-C 78.89 3.15 0.0077 20.10

Table 2. Performance comparison on COIL100 where ‘-’ denotes

the metric cannot be computed properly.

keeping a comparable or even lower subspace-preserving

errors and computation cost. While ESC yields the best

clustering accuracy, the time cost is much heavier. L-

SR, LRSC and OLRSC have good connectivity, but the

subspace-preserving errors are worse and thus the accura-

cy is around 60%. While EnSC also has a good connectiv-

ity and a low subspace-preserving error, the accuracy and

computation time are inferior to S3COMP-C and S3COMP.

In Table 2, we report the results on COIL100. We can

read that S3COMP-C and S3COMP yield the leading clus-

tering accuracy and keeping the low subspace-preserving

errors. EnSC yields the third best clustering accuracy and

subspace-preserving error, and keeps a better connectivi-

ty, due to taking a good tradeoff between the ℓ1 and the

ℓ2 norms. Note that the best three methods S3COMP-C,

S3COMP and EnSC all yield very low subspace-preserving

error and they share an (implicit or explicit) ℓ2 norm.

Method
MNIST70000

acc (a%) sre (e%) conn (c̄) t (sec.)

OLRSC M - - -

SR-SSC 87.22 - - 585.31

SSCOMP† 81.59 28.57 0.0830 280.58

ESC 90.87 - - 596.56

EnSC 93.67 15.30 0.0911 932.89

S3COMP† 96.31 30.12 0.1569 218.72

S3COMP-C† 96.32 30.11 0.1569 416.84

Table 4. Performance comparison on MNIST where ‘-’ denotes the

metric cannot be computed properly, ’M’ means that the memory

limit of 64G is exceeded. †: The ending eleven eigenvectors as-

sociating with the smallest eleven eigenvalues are used in spectral

clustering and the details are provided in the supporting material.

The experiments on MNIST are provided in Table 3 and

4. Again, we can observe that S3COMP-C still improves the

clustering accuracy around 2 ∼ 3% on MNIST4000 and

MNIST10000 with improved connectivity than SSCOMP

and keeping comparable subspace-preserving errors. On

MNIST70000, SSCOMP yields seriously degenerated re-

sult than S3COMP-C, S3COMP and EnSC, due to the con-

nectivity issue. While EnSC has the lowest subspace-

preserving error, the connectivity and the time cost are not

in a good tradeoff. Note that LSR, LRSC, SCC and OLRSC

cannot get results because of the memory limit of 64G;

whereas S3COMP-C and S3COMP inherit the computation

efficiency of SSCOMP.

In Table 5, we show the results on GTSRB. While GT-

SRB is an imbalanced dataset, surprisingly, we can again

observe that the proposed S3COMP and S3COMP-C out-

perform the listed baseline algorithms and achieve satisfac-

tory results in all four metrics. For EnSC, while it yields

the lowest subspace-preserving error, the low connectivity

leads to inferior clustering result. Due to the imbalance in
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Method
GTSRB

acc (a%) sre (e%) conn (c̄) t (sec.)

LSR 73.93 82.80 0.6185 290.97

LRSC 87.28 78.97 0.6367 15.85

SCC 70.82 - - 237.01

OLRSC 82.42 77.15 0.7606 291.38

SR-SSC 78.42 - - 223.34

SSCOMP 82.52 5.42 0.0213 15.43

EnSC 86.05 0.81 0.0095 33.46

ESC 90.16 - - 32.13

S3COMP 95.25 2.40 0.0576 3.13

S3COMP-C 95.54 2.41 0.0573 7.10

Table 5. Performance comparison on GTSRB where ‘-’ denotes

the metric cannot be computed properly.

data distribution, it is hard to find a good tradeoff between

the ℓ1 and ℓ2 norms.

5.3. More Evaluations

Convergence Behavior. To evaluate the convergence of

the proposed S3COMP-C, we show the relative change of

the self-expression matrix C in two successive iterations on

synthetic data and real world datasets in Fig. 3. We observe

that the self-expression matrix becomes stable after a few

iterations. This confirms the convergence of Algorithm 2.
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Figure 3. The relative changes of C in successive outer iterations.

Improvements in Connectivity. To better observe the con-

nectivity improvements of the proposed approach, we dis-

play the histogram of the second smallest eigenvalues of the

normalized graph Laplacian corresponding to each category

of GTSRB in Fig. 4. Note that the second minor eigenvalue

of a normalized graph Laplacian with respect to each cate-

gory measures the algebraic connectivity [30]. The dramat-

ic improvements in the second minor eigenvalues intuitively

indicate significant improvements in connectivity.

Evaluation on Dropout Rate δ. To evaluate the effect of

varying the dropout rate δ, we record the performance of

S3COMP-C using different dropout rate on synthetic data

sets with different number of data points per subspace. Ex-

perimental results are presented in Fig. 5. We observe that

when the density of the data points increases, the cluster-

ing accuracy remains relatively stable when increasing the

dropout rate. Thus when the density of data points is higher

we can use a larger dropout rate to discard more data points.

This confirms that the dropout strategy actually leads to a
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Figure 4. Histograms of second minor eigenvalues of the normal-

ized graph Laplacian for each category of GTSRB.
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Figure 5. Evaluation on effect of dropout rate δ in S3COMP-C on

synthetic data of different number of data points per subspace. (a)

Clustering accuracy (a%) as a function of δ and Ni. (b) Connec-

tivity c as a function δ.

flexible scalability, while building a desirable tradeoff be-

tween the computation efficiency and clustering accuracy.

6. Conclusion

We introduced a dropout strategy in the self-expressive

model for subspace clustering. By using Bernoulli ran-

dom variables, we proved that the dropout in self-expressive

model is equivalent to add a squared ℓ2 norm regularization.

Moreover, we proposed a scalable and flexible subspace

clustering approach, which is formulated as a consensus op-

timization problem. We solved the consensus problem by

an alternating minimization algorithm which consists of a

set of damped orthogonal matching pursuits and an average

operation. This leads to a principled and flexible way to

improve the connectivity of the induced affinity graph and

achieves a desirable tradeoff between the computation effi-

ciency and clustering accuracy. Extensive experiments on

synthetic data and real world data have validated the effi-

ciency and the effectiveness of our proposal.
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[11] Ehsan Elhamifar and René Vidal. Sparse subspace cluster-

ing. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 2790–2797, 2009. 1, 2
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